Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
4.
Endocrinology ; 159(9): 3389-3402, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30107405

RESUMO

Kisspeptin, encoded by Kiss1, activates reproduction by stimulating GnRH neurons. Although most Kiss1 neurons are located in the hypothalamus, smaller Kiss1 populations also reside in the medial amygdala (MeA), bed nucleus of the stria terminalis (BnST), and lateral septum (LS). However, very little is known about the regulation and function of these extra-hypothalamic Kiss1 neurons. This study focused on the roles and interactions of two signaling factors, estradiol (E2) and GABA, known to stimulate and inhibit, respectively, extra-hypothalamic Kiss1 expression. First, using estrogen receptor (ER)α knockout (KO) and ßERKO mice, we demonstrated that Kiss1 in both the BnST and LS is stimulated by E2, as occurs in the MeA, and that this E2 upregulation occurs via ERα, but not ERß. Second, using GABABR KO and wild-type mice, we determined that whereas E2 normally increases extra-hypothalamic Kiss1 levels, such upregulation by E2 is further enhanced by the concurrent absence of GABABR signaling in the MeA and LS, but not the BnST. Third, we demonstrated that when GABABR signaling is absent, the additional removal of gonadal sex steroids does not abolish Kiss1 expression in the MeA and BnST, and in some cases the LS. Thus, Kiss1 expression in these extra-hypothalamic regions is not solely dependent on E2 stimulation. Finally, we demonstrated a significant positive correlation between Kiss1 levels in the MeA, BnST, and LS, but not between these regions and the hypothalamus (anteroventral periventricular nucleus/periventricular nucleus). Collectively, our findings indicate that both E2 and GABA independently regulate all three extra-hypothalamic Kiss1 populations, but their regulatory interactions may vary by brain region and additional yet-to-be-identified factors are likely involved.


Assuntos
Tonsila do Cerebelo/efeitos dos fármacos , Estradiol/farmacologia , Estrogênios/farmacologia , Kisspeptinas/genética , Neurônios/efeitos dos fármacos , Receptores de GABA-B/metabolismo , Núcleos Septais/efeitos dos fármacos , Tonsila do Cerebelo/citologia , Tonsila do Cerebelo/metabolismo , Animais , Receptor alfa de Estrogênio/genética , Receptor beta de Estrogênio/genética , Feminino , Kisspeptinas/metabolismo , Masculino , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Núcleos Septais/citologia , Núcleos Septais/metabolismo , Transdução de Sinais , Ácido gama-Aminobutírico/metabolismo
5.
Endocrinology ; 157(10): 4021-4031, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27564649

RESUMO

The neuropeptide kisspeptin, encoded by Kiss1, regulates reproduction by stimulating GnRH secretion. Neurons synthesizing kisspeptin are predominantly located in the hypothalamic anteroventral periventricular (AVPV) and arcuate nuclei, but smaller kisspeptin neuronal populations also reside in extrahypothalamic brain regions, such as the medial amygdala (MeA). In adult rodents, estradiol (E2) increases Kiss1 expression in the MeA, as in the AVPV. However, unlike AVPV and arcuate nuclei kisspeptin neurons, little else is currently known about the development, regulation, and function of MeA Kiss1 neurons. We first assessed the developmental onset of MeA Kiss1 expression in males and found that MeA Kiss1 expression is absent at juvenile ages but significantly increases during the late pubertal period, around postnatal day 35, coincident with increases in circulating sex steroids. We next tested whether developmental MeA Kiss1 expression could be induced early by E2 exposure prior to puberty. We found that juvenile mice given short-term E2 had greatly increased MeA Kiss1 expression at postnatal day 18. Although MeA Kiss1 neurons are known to be E2 up-regulated, the specific estrogen receptor (ER) pathway(s) mediating this stimulation are unknown. Using adult ERα knockout and ERß knockout mice, we next determined that ERα, but not ERß, is required for maximal E2-induced MeA Kiss1 expression in both sexes. These results delineate both the developmental time course of MeA Kiss1 expression and the specific ER signaling pathway required for E2-induced up-regulation of Kiss1 in this extrahypothalamic brain region. These findings will help drive future studies ascertaining the potential functions of this understudied kisspeptin population.


Assuntos
Complexo Nuclear Corticomedial/metabolismo , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Kisspeptinas/metabolismo , Maturidade Sexual , Animais , Estradiol , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Testosterona/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...